THREE RIVERS COMMUNITY-TECHNICAL COLLEGE COURSE OUTLINE

Course Number/Title: MEC K241 Thermodynamics	
Lecture <u>3 hrs</u> Laboratory <u>0 hrs</u> Credit <u>3 hrs</u> Contact <u>3</u>	hrs
Course Description: To investigate the behavior of fluids from a fluid mechanics and thermodynamics point of view.	
Method: Lecture	
Text: Introduction to Engineering Theryodynamics, Sonntag	
Prerequisites: PHY K115, MATH K186 Co-Requisites: None	
COURSE TOPICS/CONTENT	
	HOURS
The system, properties & state, temperature, fluid pressure, conservation of mass	10
B. CONSERVATION OF ENERGY Measuring energy, reversible & irreversible processes, steady flow energy eqn, specific heat, entropy, converging mass systems	9
C. IDEAL GAS Equation of state, gas constants, const pressure, temperature & entropy processes, thermal efficiency	8
D. <u>ENTROPY & 2ND LAW</u> Thermodynamic temperature, Clausius inequality, entropy	8
E. BASIC ENGINE CYCLES Compressed air, internal combustion cycle, gas turbine, steam processes, refrigeration, Carnot cycle, jet engine & rocket cycles, thermal efficiency	8
F. VIDEO PRESENTATIONS	2
TOTAL HOURS	45
Date: February 12, 2008	
Prepared By: Robert Lantz	
Program Coordinator: <u>Robert Lantz</u>	
Department Chairperson: <u>Tony Benoit</u>	

Course Number/Title: MEC K241 Thermodynamics

Measurable Objectives

THE STUDENT WILL:

- Be able to apply the energy equation to various fluid applications
- 2. Be able to apply the continuity equation to a variety of flow situations.
- 3. Be able to calculate situations involving the ideal gas
- 4. Be able to analyze engine cycles that involve constant pressure, temperature, volume or entropy. Also to understand the perfect gas laws in relation to cycles.