Larisa Alikhanova Fall 2010 Calculus II, Math 256, 4 credit hours

Pre-requisite:	Calculus I, MAT 254	
Text:	Calculus by James Stewart, 6E	
Supplementary		
Material:	TI Graphing Calculator is required.	

- **Course Description:** The course is continuation of Calculus I. The topics include: areas, volumes, transcendental functions, techniques of integration, applications of integration, parametric equations and polar coordinates, vectors and operations on vectors, sequences and series
- **Measurements**: Quizzes, projects 15%, each test 20%, and final exam 25%.

Attendance: It is very important that you attend ALL classes. Your attendance in the classroom, participation in classroom work /projects and preparation for each class is required and is essential to your success in the course.

Support Services: Tutorial services. Meeting with me for an extra help.

Office Hours: M and W, 3:30 p.m. – 5:30 p.m. Room C104 E-mail lalikhanova@trcc.commnet.edu

Disabilities

- **Statement:** Students with disabilities, who may require special accommodations and support services, are encouraged to notify:
 - 1. Chris Scarborough, who is coordinating services to students with disabilities.
 - 2. The instructor during the first two weeks of class.

Section	Topic	Exercises
5.1	Areas (review)	298/5
5.2	The definite Integral (review)	310/5,17-19,33,47, 49
5.3	The Fundamental Theorem of Calculus (review)	321/19 – 35, 69 - 73
5.4	Indefinite Integrals (review)	329/5 15, 19 - 41
5.5	The Substitution Rule (review)	339/7 – 27, 35 - 43
6.1	Areas Between Curves	352/5 – 25, 53, 55
6.2	Volumes	362/1 – 17
6.3	Volumes by cylindrical shelves	368/3 – 13, 15 – 19
6.4	Work	373/3, 5, 7, 15
6.5	Average value of the function	377/1, 3
TEST		
7.8	Indeterminate Forms and L'Hospital's Rule	478/5 – 21, 47, 49, 55
8.1	Integration by parts	493/1 – 13, 33
8.2	Trigonometric Integrals	501/1 – 29
8.3	Trigonometric Substitution	508/1 - 13
8.4	Integration of Rational Functions by Partial Fractions	517/7 – 23
8.6	Table of Integrals	529/5, 7, 17
8.7	Approximate Integration	541/8
8.8	Improper integrals	551/1, 5, 13, 21, 27,31
TEST		
10.1	Differential Equations	607/1, 3, 5
10.3	Separable Equations	622/ 1 – 7, 11 – 15
11.1	Parametric Curves	662/1 – 13, 19
11.2	Calculus with parametric curves	672/1,3, 5, 7,11,17,31,33
11.3	Polar Coordinates	683/1-5,7-11,15, 17, 21
11.4	Areas and Lengths in Polar Coordinates	689/1-9
12.1	Sequences	720/3, 59, 13, 17 - 33
12.2	Series	730/3, 11 – 17, 21, 25, 35
12.3	The integral test	739/3 -9, 15, 21
12.4	The Comparison Tests	745/3, 7, 9
12.8	Power Series	763/3 – 15
12.9	Representations of functions as Power Series	769/ 3 – 7, 11, 15
12.10	Taylor and Maclaurin series	782/5, 7, 9, 15
TEST		
13.1	Three Dimensional Coordinate System	805/1, 3, 13
13.2	Vectors	813/5-9, 13-17, 21
13.3	The Dot Product	820/3, 5, 9, 15
13.4	The Cross Product	828/1, 3, 5, 15

- 1. Integrate the functions using substitution, integration by parts, the method of partial fractions, trigonometric substitutions, tables
- 2. Perform approximate integration
- 3. Show that the improper integral converges and find its value, or show that it diverges
- 4. Find the area bounded by the curves.
- 5. Find the volumes of revolution: disks, washers, and cylindrical shells.
- 6. Use integration on varies applications to physics and engineering
- 7. Find general and particular solution of separable differential equations
- 8. Determine whether the sequence is convergent or divergent, and find the limit of the convergent sequences.
- 9. Determine whether the geometric series converges or diverges, and find the sum of each convergent series.
- 10. Use divergence test, limit comparison test, Integral test, direct comparison test to determine whether the series is convergent or divergent.
- 11. Represent functions as power series, Taylor and Maclaurin series
- 12. Plot polar-form points.
- 13. Convert from polar to rectangular coordinates and from rectangular coordinates to polar
- 14. Find areas and lengths in polar coordinates
- 15. Graph in polar coordinates.
- 16. Find the derivative of equations of curves defined by parametric equations.
- 17. Find the arc length of a curve defined by parametric equations.
- 18. Perform operations on vectors.
- 19. Find the standard representative of a vector.
- 20. Compute a resultant vector.
- 21. Find the dot and the cross product of two vectors.