SYLLABUS

BIO 212 - ANATOMY & PHYSIOLOGY II

Spring Semester, 2007

Lecture: CRN 10243; Section M02; 12:30 - 1:55 T/Th, Rm. 202
Lab: CRN 10242; Section M2A; 9:00 - 12:00 T, Rm. 204 or
Lab: CRN 10244; Section M2B; 9:00 - 12:00 Th, Rm. 204

Three Rivers Community College
Mohegan Campus
Norwich, Connecticut 06360

William "Kirk" Kirkpatrick, Professor

Office Phone: 383-5282
Home Phone: 449-8828
Cell Phone: 235-3690
e-mail: williamkirk01@comcast.net or wkirkpatrick@trcc.commnet.edu

Office Hours: Monday and Wednesday: 10:00 - 11:00
Tuesday and Thursday: 2:00 - 3:00
other times by appointment
COURSE: BIO 212 - Anatomy & Physiology II is the second semester of a two semester sequence. Biology 211 - Anatomy & Physiology I must be taken prior to this course. This is especially important if transferring to a four-year institution with a major requiring a full academic year of anatomy and physiology or if the student is enrolled in Three River's nursing program. BIO 212 presents the students with a lecture/laboratory study of endocrinology, reproduction, hematology, cardiovascular, respiratory, digestive, excretory systems, and acid-base balance.

CREDIT: 4 credit hours consisting of 3 contact hours of lecture meeting T/Th 12:30-1:55 and 3 hours of laboratory per week meeting T or Th 9:00 – 12:00.

REQUIRED TEXTS:

RECOMMENDED TEXTS: (optional)

The student is also expected to provide their own dissecting kit and gloves, which are available from the bookstore.

GENERAL COURSE OBJECTIVES:

1. Provide students with a transferable laboratory science to satisfy the science requirements of Three River's LAS or GS Associate Degree.
2. To fulfill pre-requisite and co-requisite anatomy and physiology requirements for Three River's Nursing program.
3. Provide students with an undergraduate level study of human body systems.
4. Provide students with a foundation for study of the medical, biological, or physical sciences.
5. Provide students with critical thinking and problem solving skills.
6. Demonstrate the biological sciences and how they relate to other disciplines.
7. Illustrate the interdependence of all life forms operating on natural laws with the physical environment.
8. Encourage not only awareness of the student's natural uniqueness but also their role as an interrelated biological organism of this planet.
CLASS ATTENDANCE:

Attendance of class is required. Attendance is taken. Absences can be very detrimental due to the nature of the material. An explanation of all absences is very much appreciated, especially if presented in advance when possible. It is the student’s responsibility to obtain materials and notes for any classes that they miss.

METHODS OF STUDENT EVALUATION; GRADING POLICIES

A. The student's grade for the course represents their ability to master course objectives, attitude, rate of improvement, proficiency, and knowledge of course material.

B. Final letter grades are determined by converting accumulated points into a percentage score using the following formula:

\[
\text{percentage score} = \frac{\text{number of points you have accumulated on exams}}{\text{total number of points possible}} \times 100
\]

C. Points are obtained by the following methods of evaluation:

1. Lecture:
 a. Quizzes: Weekly quizzes worth 15 points each will be given on-line at the CourseCompass web site (http://www.coursecompass.com) on Wednesdays. The quiz will be available from 6 am to midnight and will be on a timer. Access to the quiz is password protected. The password will be given to you. These quizzes will consist of 15 multiple choice questions (at 1 point each) covering lecture material given since the previous quiz. If missed, they cannot be made-up, however the lowest score will be dropped at the end of the semester.
 b. Major Exams: Three major exams, non-comprehensive, of 140 points will be given in class as scheduled (see p. 25)
 c. Extra Credit: There will usually be extra credit questions attached to the major exams. These will be essay questions having variable point value. In addition, extra points may be given from leaning modules on the ADAM Interactive Physiology CD that comes with your textbook or accessed from Course Compass. Details will be within the learning folders in the Assignment section of Course Compass.

2. Laboratory:
 a. Quizzes: A 40 point lab quiz over hematology and a 15 point quiz over respiratory physiology and urine analysis will be given.
 b. Practical exams: a 45-point identification exam over Sebastiani and Fishbeck chapters 3-7 of lab unit II objectives (see pp. 20-22) and a 45 point identification exam over Sebastiani and Fishbeck chapters 8-9 (see pp. 22-23) of lab unit II and also heart lab unit III-A objectives (p. 23) will be given.
 c. Lab reports: The following written reports will be required: cardiac anatomy (15 points), cardiovascular physiology (15 points),
pulmonary function (15 points), and renal regulation of osmolarity (30 points).

D. Percentage contribution of each evaluation process to the overall lecture/lab score and to the overall grade:
1. weekly quizzes: 2.7% of lecture, 1.9% overall (each); 21% of lecture, 15% overall (all 9 or 10 for the semester)
2. major exams: 25% of lecture, 17.5% overall (each of the three)
3. regulation of osmolarity lab report: 13.6% of lab, 4% overall
4. hematology lab quiz: 18% of lab, 5.5 overall
5. respiratory & renal quiz: 7% of lab, 2.1% overall
6. dissection lab practical exam #1: 20% of lab, 6% overall
7. dissection lab practical exam #2: 20% of lab, 6% overall
8. cardiac anatomy lab report: 7% of lab, 2.1% overall
9. cardiovascular physiology lab report: 7%, 2.1% overall
10. pulmonary function lab report: 7% of lab, 2.1% overall

E. Exam and quiz questions for lecture and/or laboratory material may consist of multiple choice, true/false, fill in the blank, matching, identification, or essay questions. Some questions might be reserved as an extra credit option.

F. Absence on examination days:

Students must take exams as scheduled.

G. Final letter grades for the course are determined by the following steps:
1. Converting lecture points into a percentage score.
2. Converting laboratory points into a percentage score.
3. Combining 70% of the lecture percentage score with 30% of the labor percentage score to determine an overall course percentage score.
 (Lecture is worth 70% and lab 30% of the final grade.)
* *4. The final course grade is determined from the overall course percentage score related to the following percentage scale:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>A+</td>
</tr>
<tr>
<td>93 - 99%</td>
<td>A</td>
</tr>
<tr>
<td>90 - 92%</td>
<td>A-</td>
</tr>
<tr>
<td>88 - 89%</td>
<td>B+</td>
</tr>
<tr>
<td>83 - 87%</td>
<td>B</td>
</tr>
<tr>
<td>80 - 82%</td>
<td>B-</td>
</tr>
<tr>
<td>78 - 79%</td>
<td>C+</td>
</tr>
<tr>
<td>73 - 77%</td>
<td>C</td>
</tr>
<tr>
<td>70 - 72%</td>
<td>C-</td>
</tr>
<tr>
<td>68 - 69%</td>
<td>D+</td>
</tr>
<tr>
<td>60 - 67%</td>
<td>D</td>
</tr>
<tr>
<td>0 - 59%</td>
<td>F</td>
</tr>
</tbody>
</table>

*A+ cannot be reported to the registrar's office as an official grade

**The instructor reserves the right to use subjective evaluation, especially in cases where the final percentage score is on a borderline between grades.

PROCEDURE FOR DROPPING COURSE(S):

A student who finds it necessary to discontinue a course must complete a withdrawal form obtained from the Registrar's Office. Students may withdraw from January 19 to March 30 without the instructor's signature. Students withdrawing between March 31 and April 23 need their instructor's or advisor's signature. Therefore, the last day to withdraw from a course is April 23. Students who do not withdraw, but stop attending will be assigned an "F" grade.
ACADEMIC INTEGRITY AT THREE RIVERS

Academic integrity is essential to a useful education. Failure to act with academic integrity severely limits a person’s ability to succeed in the classroom and beyond. Furthermore, academic dishonesty erodes the legitimacy of every degree awarded by the College. In this class and in the course of your academic career, present only your own best work; clearly document the sources of the material you use from others; and act at all times with honor.

DISABILITIES:

If you are a student with a disability and believe you will need accommodations for this class, it is your responsibility to contact the Disabilities Counseling Services at 383-5240. To avoid any delay in the receipt of accommodations, you should contact the counselor as soon as possible. Please note that I cannot provide accommodations based upon disability until I have received an accommodation letter from the Disabilities Counselor. Your cooperation is appreciated.

REVISIONS TO THE SYLLABUS

The instructor reserves the right to revise the academic schedule, objectives, and/or topical outline contained in this syllabus.
SPECIFIC OBJECTIVES FOR THE LECTURE PORTION OF THE COURSE

The following lecture-learning units are within corresponding folders within the Assignment Section of Course Compass. Additional learning aids are also within those folders such as: reading assignments, dates, testing, computer programs within the lab, on-line learning aids from the textbook publisher, class notes and handouts, Internet links, and practice exam questions.

I. **Endocrinology**: study of control by endocrine glands
Upon completion of a study of the endocrine system, the student should be able to correctly answer questions concerning the following:

A. Describe the basic overall makeup of the endocrine system.
 1. List and describe methods of intercellular communication (table 18-1, p. 592)
 2. Define the following:
 - exocrine gland
 - feedback regulation
 - endocrine gland
 - tropic hormone
 - hormone
 - target cells
 3. Describe the chemical structure groups hormones may be divided into: amino acid derivatives, peptides, lipid derivatives (fig. 18-2, p. 594).
 4. Describe proposed mechanisms in which hormones initiate responses from target organ cells by discussing lipid solubility, receptor, G-protein, adenyl cyclase, cyclic AMP, protein kinases, phospholipase C, Ca++ (fig. 18-3 and 18-4, p. 597-598).
 *5. Define prostaglandins and leukotrienes (p. 595).
 6. List the names and locations of the major endocrine glands (fig. 18-1, p. 593)

B. Describe the anatomy and physiology of the pituitary gland.
 1. Describe the anatomy of the pituitary and its relationship to the hypothalamus of the brain using the following terms:
 - sella turcica
 - infundibulum
 - median eminence
 - adenohypophysis
 - releasing and inhibiting factors
 - posterior pituitary
 - anterior pituitary
 - hypophyseal portal system
 - neurohypophysis
 2. Describe the function and feedback control of the following adenohypophyseal hormones:
 - growth hormone (somatotropin)
 - thyroid stimulating hormone
 - gonadotropic hormones
 - adrenocorticotropic hormone
 1) follicular stimulating hormone
 2) luteinizing hormone
 - prolactin (lactogenic hormone)
 3. In reference to growth hormone, define somatomedins, glucose-sparing effect, and diabetogenic effect.
 4. Describe the function and feedback control (if any) of the following neurohypophyseal hormones:
 - oxytocin
 - anti-diuretic hormone (vasopressin)
 - Define: paraventricular and supraoptic nucleus, milk-let-down reflex, antiduresis, osmoreceptors, and hypothalamic-hypophyseal nerve tract

*will not be covered in class
5. Know the normal plasma osmolarity level in milliosmols per liter
*6. Define:
dwarfism diabetes insipidus Cushing's disease
gigantism acromegaly

C. Describe the anatomy and physiology of the thyroid gland.
1. State the location of the gland.
2. Describe the anatomy of the gland by discussing lateral lobes, pyramidal lobe,
isthmus, follicles, follicular and parafollicular cells.
3. Discuss the functions and feedback control of thyroxin (T4), triiodothyronine
 (T3), and calcitonin.
*4. Describe the chemical formation of T3 and T4 (fig. 18-11, p. 609).
*5. Define:
hypo-hyperthyroidism exophthalmos
Grave's disease (thyrotoxicosis) thyroglobulin
myxedema radioactive iodine uptake
cretinism goiter
thyroid storm
protein-bound iodine (thyroxin-binding globulin)

D. Describe the anatomy and physiology of the parathyroid glands.
1. Discuss the function of the feedback regulation of parathormone.
*2. Define hypo-hyperparathyroidism, hypo-hypercalcemia and state the
 abnormalities that result.
3. Know what the normal blood calcium ion concentration is.

E. Describe the adrenal (suprarenal) glands.
1. Describe the anatomy and physiology of the adrenal cortex.
 a. Describe the location of the gland and state the cellular layers (zonas) from
 superficial to deep and list which hormone groups are secreted by each.
 b. Describe the function and feedback regulation of aldosterone by describing
 the renin-angiotensin pathway.
 c. Know the normal blood sodium and potassium ion level
 d. State secretion site, function of, and control of natriuretic hormone.
 e. List the three major glucocorticoids, stating which is most abundant.
 f. List functions of and describe the feedback control of glucocorticoids. Be
 sure to relate stress and chronic inflammation to the above.
 g. Define:
 *hypo-hyponatremia mineralcorticoid
 *hypo-hyperkalemia glucocorticoids
 *Addison's disease gluconeogenesis
 *Cushing's disease gonadocorticoids
 *virilism adrenocorticoids
 *gynecomastia
2. Describe the suprarenal medulla (adrenal medulla).
 a. List the functions of epinephrine and norepinephrine.
 b. Define glycogenolysis, chromaffin cells, and sympathomimetic.
 c. Discuss the relationship between the adrenal medulla and the sympathetic
 nervous system.

*will not be covered in class
H. Be able to discuss the endocrine functions of the Islets of Langerhans of the pancreas.
 1. List the functions of insulin and glucagon and the type of cells that secrete them.
 2. Describe the feedback control between insulin, glucagon, and blood glucose levels.
 3. Be able to state what the normal blood glucose level is and the primary reason for its regulation.
 4. Define:
 - alpha, beta cells
 - diabetes mellitus I, II
 - glycogenesis
 - glycogenolysis
 - acidosis
 - ketosis
 - acetic acid
 - acetoacetic acid
 - acetone
 - hyperinsulinism
 - hypo-hyperglycemia
 - glucosuria
 - ketones
 - ketonuria
 - polyuria

F. Discuss the endocrine functions of the testes. (p. 623)
 1. List the functions of testosterone and inhibin.
 2. Discuss the relationship of testosterone, FSH, and ICSH on spermatogenesis.
 3. Define spermatogenesis, spermatogonia, interstitual cells of Leydig, and sustentacular cells.

G. Discuss the endocrine function of the ovaries. (p. 623)
 1. List the functions and site of production of estrogens and inhibin.
 2. List the functions and site of production of progesterone.

*H. Briefly describe the function of the hormone, melatonin, secreted by the pineal gland. (p. 616 and p. 114 of Applications Manual)
*I. Describe the function of the hormones, leptin and resistin, secreted by adipose. (p. 624)
*J. Describe the involvement of hormones with stress by discussing the alarm, resistance, and exhaustion phase. (pp. 626-628)
*K. Be aware of the affect of hormones on behavior. (pp. 628)
*L. Be aware pf the affects of hormones and athletic performance. (p. 629)

II. Reproductive system: Upon completion of a study of the reproductive system, the student should be able to correctly answer questions concerning the following:
A. Describe the male reproductive system.
 1. Briefly describe the descent of the testes by defining the inguinal canal, spermatic cord, tunica vaginalis, gubernaculum, and cryptorchidism.
 2. Define spermatic cord and be able to list its contents.
 3. Describe the function of the scrotum by defining dartos and cremaster muscles.
 4. Describe the structure and function of the testes and associated structures by defining:
 - tunica albuginea
 - spermatogonia
 - lobules
 - testosterone
 - interstitial cells of Leydig
 - primary spermatocytes
 - rete testes
 - seminiferous tubules
 - FSH
 - ICSH
 - testes
 - tunica vaginalis
 - spermatogenesis
 - spermatzoa
 - meiosis
 - spermatids
 5. State parts and function of the epididymis, vas deferens, seminal vesicles, ejaculatory ducts, prostate gland, and bulbourethral glands.

*will not be covered in class
4. Describe the anatomy of the penis and urethra by defining: prostatic, membranous, and penile urethra; corpora cavernosa, corpora spongiosum, glans, and prepuce.

5. Describe the composition of semen.

B. Describe the anatomy of the female reproductive system.

1. Describe the location and structure of the ovary.
 a. Organize the ovary into its layers using the following terms: tunica albuginea, stroma (cortex and medulla).
 b. Define oogenesis and differentiate between oogonium, primary oocyte, secondary oocyte, ovum, first and second polar body.
 c. Define follicles and differentiate between primordial, primary, secondary (growing), tertiary (mature or Graafian) follicles, follicular cells (thecal and granulosa).
 d. Define ovulation and corona radiata
 e. Define corpus luteum and corpus albicans.

2. State the purpose and location of parts (infundibulum, fimbriae, ampulla, and isthmus) of the fallopian tubes.

3. Locate and define the following parts of the uterus:
 - fundus
 - body
 - cervix
 - isthmus
 - external cervical os
 - cervical canal
 - serosa
 - myometrium
 - internal cervical os
 - endometrium

*4. Define anteflexion and retroflexion (pp. 1053)

*5. Briefly describe the overall structure of the vagina and define Bartholin's glands (p. 1057-1059).

*C Briefly describe the support for the female reproductive tract by defining: ovarian ligament, suspensory ligament, broad ligament (divided into mesovarium, mesosalpinx), uterosacral ligament, and round ligament.

D. Describe the female sexual cycle (menstrual).

1. State the purpose of the cycle.
2. List hormones involved in the regulation of the cycle.
3. Relate pituitary hormones, feedback regulation, and causes to the cyclic changes in ovarian and uterine structures. (link with objectives 4 and 5 below)
4. Describe the ovarian cycle by defining follicular phase, ovulation, luteal phase
5. Describe the uterine cycle by defining the menses, proliferative and secretory phase.
6. Describe the hormonal and structural changes in the cycle caused by fertilization. Describe the role of human chorionic gonadotropin.

*7. Define: menstruation, menarche, and menopause.

*E. Briefly describe fertilization and development by defining the following:
 - fertilization, gestation, trimesters, cleavage, implantation, morula, blastocyst (with inner cell mass and trophoblast cells), gastrula (gastrulation), germ layers (ectoderm, mesoderm, and endoderm), placenta, extraembryonic membranes, embryo, fetus (pp. 1075-1082)

*F. Briefly describe the chorion, amnion, the basic structure of the placenta, and placental circulation. (1082-1085)

*will not be covered in class
III. **Cardiology:** study of the heart

Upon completion of a study of the heart, the student should be able to correctly answer questions concerning the following subject matter.

A. Describe the general path of circulation.
 1. Define: heart, arteries, arterioles, capillaries, veinules, veins, systemic and pulmonary circulation.
 *2. Compare the tissue structure of the different types of vessels. (pp. 709 - 717)

B. Be able to describe the anatomy of the heart using the following terms:
 - mediastinum
 - pericardium (parietal & visceral)
 - epicardium
 - myocardium
 - endocardium
 - right & left atria
 - right & left ventricle
 - interatrial septum
 - right & left AV valves
 - aortic & pulmonary semilunar valves
 - bicuspid & tricuspid valves
 - mitral valve
 - coronary arteries (and major branches)
 - coronary sinus
 - chordae tendinae

C. Trace the path of blood through the heart, naming chambers, valves, and major vessels (aorta & vena cava) of the systemic and pulmonary circulation.

D. Describe how the heart muscle itself received nourishment by being able to trace the path of blood through the coronary circulation. Be able to do this by diagramming the following vessels: left and right coronary artery, anterior and posterior descending arteries, circumflex and marginal arteries, coronary veins, and coronary sinus.

E. Discuss the electrophysiology of the heart.
 1. Describe the electrical properties of cardiac muscle, using the following terms: working cells, pacemaker cells, automaticity, fast and slow channels, and plateau
 2. Describe the location of conducting structures and trace the path of the electrical activity using the following terms:
 - SA node
 - atrial myocardium
 - AV node
 - AV bundle (of His)
 - Rt. and left bundle branches
 - Purkinje system
 - ventricular myocardium
 - resting & threshold potentials
 - refractory periods
 - AV delay
 3. State why the SA node is the pacemaker.
 4. State the purpose of the electrical conduction system described in objectives 2 and 3 above.
 5. State why cardiac muscle will not go into tetanic contraction.
 6. Define ectopic pacemaker. State what happens if the SA node is not the pacemaker and how the heart rate is affected by ectopic pacemakers.
 7. Define heart block and ventricular escape.

will not be covered in class
*8. In reference to the ECG, define:
- p-wave
- QRS complex
- QRS interval
- t-wave
- Eithoven's triangle
- p-r interval
- Eithoven's standard leads
- s-t segment

F. Describe the cardiac cycle and the pumping action of the heart.
1. Define systole and diastole.
2. Describe the pumping action of the atria and discuss the causes of the A, C, and V waves on the atrial pressure curve.
3. Describe the pumping action of the ventricles using:
 - period of rapid fill
 - dicrotic notch
 - period of isovolumetric relaxation
 - period of isometric (isovolumetric contraction)
 - period of ejection
 - afterload
4. State the cause of valvular opening and closing.
5. List the names and causes of the four heart sounds.

G. Discuss cardiac volumes
1. Define: end diastolic volume and state its normal amounts
 a. Define filling time, venous return and describe how they, along with the size of the heart affect end diastolic volume.
 b. Define cardiac reserve.
 c. Be able to calculate maximum heart rate, and relate it to filling time.
2. Define end diastolic volume and state its normal amounts.
3. Define stroke volume output and state its normal amounts
 a. If given EDV and ESV, be able to calculate stroke volume.
 b. Define preload, Starling’s law, contractility, positive and negative inotropic agents, and afterload and describe how they affect stroke volume.
4. Define cardiac output and state its normal amounts.
5. If given stroke volume and heart rate, be able to calculate cardiac output.

H. Discuss mechanisms that control cardiac output.
1. Discuss factors that affect cardiac output by affecting venous return (intrinsic autoregulation flowchart)
2. Discuss reflex control by the autonomic nervous system using such terms as:
 - parasympathetic stimulation
 - sympathetic stimulation
 - vagus nerves
 - greater cardiac nerves
 - baroceptors
 - heart block
 - norepinephrine
 - acetylcholine
 - tachycardia
 - bradycardia

*G. Define the following:
- ischemia
- angina pectoris
- myocardial infarction
- murmur
- myocarditis
- cardiac arrhythmias
- electrocardiogram
- mitral valve prolapse
- heart block
- premature ventricular contraction (PVC)
- endocarditis
- cardiac tamponade
- congestive heart failure (p.138-140 AM)
- valvular insufficiency
- flutter
- valvular stenosis
- fibrillation
- balloon angioplasty
- coronary thrombosis

*will not be covered in class
IV. **Anatomy of the Circulatory System:**
Upon completion of a study of the anatomy of the circulation system, the student should be able to correctly answer questions concerning the following subject matter.

A. State the origin, general location, and destination of the following major arteries:
- aortic arch
- ascending aorta
- thoracic aorta
- abdominal aorta
- coronary
- brachiocephalic
- common carotid
- external carotid
- subclavian
- vertebral
- intercostal
- phrenic
- celiac
- brachial

- left gastric
- hepatic
- splenic
- superior mesenteric
- basal
- Circle of Willis
- thyrocervical trunk
- internal thoracic
- axillary
- brachial
- celiac

- pericardial
- bronchial
- esophageal
- renal
- testicular or ovarian
- suprarenal
- common iliac
- internal iliac
- external iliac
- femoral
- popliteal
- anterior tibial
- posterior tibial
- radial

- hepatic
- suprarenal
- renal
- testicular or ovarian
- inferior vena cava
- common iliac
- small saphenous
- popliteal
- femoral
- external iliac

B. State the structures drained, general location, and destination of the following major veins:
- cephalic
- external jugular
- internal jugular
- basilar
- ulnar
- axillary
- brachial
- subclavian
- superior vena cava
- azygos

- brachiocephalic
- internal iliac
- anterior tibial
- posterior tibial
- great saphenous
- inferior mesenteric
- portal (hepatic)
- subclavian
- superior mesenteric
- hepatic portal system

- hepatic
- suprarenal
- renal
- testicular or ovarian
- inferior vena cava
- common iliac
- small saphenous
- popliteal
- femoral
- external iliac

V. **Physiology of Circulation:**
Upon completion of a study of circulatory physiology, the student should be able to correctly answer questions concerning the following:

A. Be able to describe the percentage of blood volume distribution within the different blood vessels.

B. Discuss blood flow rates (perfusion) to different body structures at rest and at exercise.
 1. Correlate with metabolic rates and needs for oxygen and nutrients.
 2. Correlate with changing diameters of the blood vessels affecting perfusion rates.

C. Describe the physical factors causing blood flow.
 1. State the importance of blood flow (perfusion).
 2. Describe the causes of blood flow.
 a. Discuss the relationship of pressure gradients, elasticity of arteries and perfusion.
 b. Describe the relationship of resistance to perfusion by discussing viscosity and tube geometry.

will not be covered in class
D. Contrast blood flow in arteries, arterioles, capillaries, veinules, and veins according to resistance, construction, innervation, and velocity.

E. Discuss arterial blood pressure.
 1. Define pulse and pulse pressure.
 2. Define and be able to calculate mean blood pressure.
 3. Derive an equation for mean arterial pressure from the equation for perfusion.
 4. List factors that may alter arterial pressure by affecting cardiac output.
 5. Discuss factors affecting blood volume.
 6. Discuss factors which may affect arterial pressure by affecting peripheral resistance.
 a. Describe the vasomotor reflex
 b. Correlate blood volume and viscosity to blood pressure

VI. Hematology: study of blood

 Upon completion of a study of blood, the student should be able to correctly answer questions concerning the following:

*A. List and describe the major functions of blood. (p. 640)

B. Discuss the composition and functions of the major components parts of blood.
 1. State the quantity and the percentage of body weight made up of blood.
 a. Define and state normal hematocrit value.
 b. Define hypo- and hypervolemia.
 2. Describe the shape, size, life span, normal RBC count, and functions of the erythrocytes.
 3. Describe the leukocytes.
 a. State normal WBC and differential WBC count values.
 b. Organize leukocytes into granulocytes versus agranulocytes.
 c. Describe the anatomy, function, and site of production of neutrophils, eosinophils, basophil, monocytes, and lymphocytes.
 d. List and describe the properties of WBC, such as amoeboid movement, margination, diapedesis, chemotaxis, phagocytosis.
 e. In relation to WBCs, define the following:
 - PMN: *histocompatibility, *antigen-antibody complex, antigen, memory T-cells
 - poly: antigen, memory T-cells
 - bands: antibody, *tissue typing, helper T-cells
 - cytotoxic T-cells: juvs, helper T-cells
 - B, T, & NK-lymphocytes: segs, fixed macrophages
 - plasma cells: suppressor T-cells, free macrophages
 4. State normal numbers, site of production, and function of the platelets.
 5. Be able to describe plasma.
 a. State the volume and percentage of blood composed of plasma.
 b. List the major chemical components of plasma.
 c. List, describe the function, and state production site of the major plasma proteins: albumen, globulins, and fibrinogen.

6. Describe hemoglobin.
 a. State the normal quantity of hemoglobin.
 b. Discuss the effect of age on hemoglobin production.
 c. List different forms of hemoglobin.

*will not be covered in class
d. State the major functions of hemoglobin.
e. Describe the chemical structure of the hemoglobin molecule.

C. Describe the process of hematopoiesis.
1. Discuss the mesoblastic, hepatic, and myeloid stage of hematopoiesis.
2. List and discuss the sequence of erythrogenesis using the following: stem cell, hemocytoblast, proerythroblasts, erythroblast, normoblast, and reticulocyte.
3. List nutrients needed for adequate RBC formation and discuss the relationship between vitamin B12, intrinsic factor, and pernicious anemia.
4. Describe the role of erythropoietin.
5. In reference to iron metabolism, define: ferrous versus ferric iron, transferrin, apoferritin, ferritin, and hemosiderin.

D. Describe the process involved in the destruction of old erythrocytes.
1. State the major organs where old RBCs are destroyed.
2. Describe the sequence involved in the breakdown of hemoglobin using the following terms:
 - heme
 - globin
 - iron
 - biliverdin
 - bilirubin
 - urobilinogen
 - liver
 - kidney
 - iron
 - urobilin
 - urochrome
 - jaundice
3. Describe the anatomy of the biliary tract.

* E. Describe the processes that protect us from infection (immunity and inflammation).
1. Define immunity. p. 764
2. Organize lymphocytes into their specific varieties and briefly state the function of each. pp. 768
3. List and know the basic location of lymphoid tissues such as: lymphoid nodules, tonsils, lymph nodes, thymus, and spleen. pp. 769-775
4. Describe nonspecific defenses against disease.
 a. List physical barriers. pp. 775-777
 b. List and define varieties of phagocytes. Also define margination, diapedesis, chemotaxis, and adhesion. pp. 777-778.
 c. Describe inflammation. pp. 781-782, fig. 22-13
 (1) List the four local signs of inflammation.
 (2) Describe the cells, chemicals, and steps involved in the inflammatory response.
 (3) State the purpose (goals) of inflammation.
 d. Briefly define other non-specific defenses such as: NK cells, complement, interferon, cytokines, fever, and pyrogens. pp. 778-780, 782
5. Define the following forms of immunity: innate, active (natural and induced), passive (natural and induced). p. 782-783
6. Briefly describe the process of immunity.
 a. List and briefly describe the properties of immunity. pp. 783-784
 b. Briefly describe cell-mediated immunity by discussing T-cells (and their varieties), antigen presenting cells, and their interactions. pp. 784-789
 c. Briefly describe humoral immunity by discussing B-cells (and their varieties) and antibody. pp. 789-792
 d. List and briefly define the five classes of antibody (immunoglobulin). p. 793; table 22-1

*will not be covered in class
e. List and briefly discuss how antibodies destroy antigen. pp. 792

F. Discuss the processes involved in hemostasis.
 1. Define hemostasis.
 2. List factors that prevent coagulation.
 3. Define vascular spasm and platelet plug.
 4. Discuss the intrinsic and extrinsic pathway for clot formation using the following terms:
 - clotting factors
 - thromboplastin
 - platelets
 - thrombin
 - calcium
 - fibrinogen
 - prothrombin
 - fibrin
 - prothrombin activator (prothrombinase)
 5. Define serum, thrombus, embolus, streptokinase, tissue plasminogen activator (TPA)

G. Define the following miscellaneous hematology terms:
 - hematocrit
 - anemia
 - leukopenia
 - buffy coat
 - hypochromia
 - diff count
 - RBC count
 - hyperchromia
 - thrombocyte
 - polycythemia
 - WBC count
 - thrombocytopenia
 - oligocytemia
 - leukocytosis
 - megakaryocyte

VII. Respiratory System:
Upon completion of a study of the respiratory system, the student should be able to correctly answer questions concerning the following:

A. State the functions of the respiratory system.
B. List and define phases of respiration.
C. Describe the anatomy of the respiratory system.
 1. Describe the walls, contents, lining, and associated structures of the nasal cavities. pp. 817-818
 2. Describe the location, boundaries, and lining of the pharynx. p. 819
 3. Describe the anatomy of the larynx. pp. 819-820
 a. List boundaries
 b. List functions.
 c. List and locate the cartilages of the larynx.
 4. Describe the overall anatomy of the lungs by discussing the root, hilus, surfaces, lobes, and segments. pp. 823-824
 5. Describe the location, boundaries, and construction of the trachea. p. 821-822
 6. Describe the organization of the bronchial tree by defining and stating numbers of primary, secondary, and segmental bronchi. pp. 824-826
 7. Describe the construction of the micro-airway tubes by defining: lobular, terminal, and respiratory bronchioles, alveolar duct, alveolar sac, and alveolus. pp. 826
 8. Describe the micro-anatomy and the significance of the alveolar-capillary membrane. pp. 826-829
D. Describe the physiology of pulmonary ventilation.
 1. List muscles used in normal and forced inspiration and expiration.
 2. Review the pleural cavity, fluid, and membranes. p. 829

*will not be covered in class
3. Define intrapleural, intra-alveolar, and ambient pressure.
4. Discuss factors that maintain a partial vacuum intra-pleural pressure.
 a. State the mechanism for gas absorption from the pleural cavity.
 b. State causes of elastic recoil of the lungs.
 c. Discuss the relationship between surfactant and surface tension.
5. Define compliance and airway resistance.
6. List sequence of events causing inspiration and expiration.
7. Define the various pulmonary volumes and capacities.
8. Define anatomical, alveolar and physiological dead space volume.
9. Define and be able to calculate minute respiratory and alveolar ventilation volume.
10. Describe the humoral and neural control of ventilation.
 a. Describe the Hering-Breuer reflex.
 b. Describe the effects of blood CO2, O2, and pH on neural control through peripheral and central chemoreceptors.
 c. List the basic components of the respiratory center in the pons and medulla.
E. Describe the physiology of gas exchange.
1. Define Charles, Boyle's and Dalton's gas laws.
2. List factors affecting diffusion of gases.
3. Describe the composition of alveolar air and compare with atmospheric air.
4. Describe the diffusion of oxygen and carbon dioxide across pulmonary and systemic capillary walls.
5. State normal alveolar and venous pO2, and pCO2 values.
6. Know the normal "blood gas" concentration.
7. Define venous admixture.
F. Describe the physiology of gas transport by the blood.
1. Discuss oxygen transport by reviewing oxyhemoglobin and by discussing the oxyhemoglobin dissociation curve and the effects of temperature and pH on it.
2. Describe the Bohr effect.
3. Define O2 - hemoglobin saturation.
 a. Know the normal "O2 sats" for both arterial and venous blood.
 b. If given an oxyhemoglobin dissociation curve and blood gas concentration, be able to determine O2 sat level. If given the O2 sat level, be able to determine the blood gas concentration (O2).
4. Briefly discuss oxygen transport in the dissolved state.
5. Define carboxyhemoglobin
6. Discuss carbon dioxide transport by:
 a. review carbaminohemoglobin
 b. List four methods of carbon dioxide transport and amounts carried by each.
 c. Define carbonic anhydrase and the chloride-bicarbonate ion shift.
VIII. Digestive System:
Upon completion of a study of the digestive system, the student should be able to correctly answer questions concerning the following: (Much of this material will be linked with the dissection in lab)

A. State the overall purpose of digestion. pp. 863
B. List the overall chemical breakdown processes for carbohydrates, lipids, protein, and nucleic acids. (see fig. 24-26 and table 24-2, pp. 903-904)

*will not be covered in class
*C. Describe the overall anatomy of the G-I tract.
1. List and state the purpose of the different types of teeth. p. 874
2. State dentition of the deciduous and permanent teeth. p. 874
3. State the location, drainage, and type of saliva produced by the parotid, submaxillary, and sublingual glands. pp. 871-872
4. Define mastication (chewing) and list muscles of mastication (temporalis and masseter).
5. List and define the layers of the G-I tract wall as seen in cross section. pp. 866-868
6. Describe the location, purpose, mucosa and muscularis makeup of the esophagus. p. 875-876
7. Define the following areas and parts of the stomach: pp. 877-881
 - gastroesophageal junction
 - pyloric valve
 - cardia
 - rugae
 - fundus
 - gastric glands
 - antrum
 - -mucous cells
 - body
 - -parietal cells
 - curvatures (greater, lesser)
 - -chief cells
 - pylorus
8. Describe the overall anatomy of the small intestine. pp. 884-887
 a. Describe the course of the duodenum.
 b. Define and locate the jejunum and ileum.
 c. Contrast the mucosa of the small intestine segments by defining: villi, Brunner's glands, central lacteal, and Peyer's patches.
9. Describe the biliary system. pp. 888-895
 a. List the lobes of the liver.
 b. List the major functions of the liver and gall bladder.
 c. Describe the drainage of bile from the liver by locating and defining: hepatic cystic, common bile ducts; ampulla of Vater, and sphincter of Oddi.
 d. Describe the overall location, parts, and drainage of the pancreas.
10. Describe the overall anatomy of the large intestine by defining and locating: pp. 896-901
 - ileo-cecal valve
 - ascending colon
 - sigmoid colon
 - splenic flexure
 - transverse colon
 - hepatic flexure
 - descending colon
 - cecum
 - rectum
 - appendix
 - haustra
11. Define the following:
 - mastication
 - greater omentum
 - duodenal cap
 - deglutition
 - lesser omentum
 - duodenojejunal flexure
 - bolus
 - mesentery
 - peritoneum
 - chyme
 - mesocolon

*D. Describe the overall physiology of the digestive system.
1. State the purpose of G-I tract secretions. p. 902
2. List the chemical secretions and digestive action of saliva. pp. 871-872 and fig. 24-26 and table 24-2, pp. 903-904
3. Describe the digestive functions of the stomach. pp. 879-880
 a. Describe the chemical mechanism of hydrochloric acid secretion by the parietal cells of the stomach. p. 881 and fig. 24-14

*will not be covered in class
b. Describe the chemical activation of pepsinogen into pepsin and the digestive function of it on protein molecules. p. 880 and fig. 24-26 and table 24-2
4. List the digestive secretions of the pancreas and the digestive actions of each. p.889 and fig. 24-26 and table 24-2
5. Describe the effect of the hormone, cholecystokinin on the gall bladder. p.894-895
6. State the purpose of bile. p. 894
7. List the digestive secretions of the small intestine and the digestive actions of each. fig. 24-26 and table 24-2
8. Describe the basic absorption of nutrients. pp. 903-907
9. State the digestive and absorption functions of the large intestine. p. 899-900
10. Describe basic movements of the GI tract.
 a. Define segmentation and peristalsis. pp. 868
 b. Define enterogastric reflex and defecation. pp. 883, 863, fig.24-25; p.901

IX. **Excretory System:**
Upon completion of a study of the excretory system, the student should be able to correctly answer questions concerning the following:

A. List the functions of the excretory system.
B. Locate and describe the fixation and shape of the kidneys.
C. Describe the internal anatomy of the kidneys.
 1. Locate the following: capsule, hilus, cortex, medulla, pyramids, columns, calyx, and pelvis.
 2. Describe the structure of the nephron.
 3. Describe the blood supply to the kidneys and nephrons within.
D. Describe the course of the ureters.
E. Describe the overall anatomy of the urinary bladder by defining trigon, urethra, internal and external urethral sphincters.
F. Describe the basic physiology of micturition.
G. Describe the physiology of urine formation.
 1. Discuss the dynamics of glomerular filtration.
 a. Define glomerular filtration.
 b. State the cause of glomerular filtration.
 c. State composition of glomerular filtrate.
 d. State regulation of glomerular filtration rate and its effect on urine formation.
 2. Describe tubular reabsorption.
 a. Define tubular reabsorption.
 b. State the quantity of glomerular filtrate that is reabsorbed.
 c. State which chemical substances are reabsorbed.
 d. Describe the basic mechanism for the reabsorption of an ionic and a non-ionic chemical substance using NaCl and glucose as examples.
 e. Describe the counter-current mechanism for producing a dilute or concentrated urine by discussing osmolarity changes associated with the loop of Henle and the mechanism of ADH.

will not be covered in class
f. Describe how the kidneys regulate the normal plasma concentration of sodium, potassium, and calcium ions through tubular reabsorption controlled by the hormones aldosterone and parathormone.

X. **Acid-Base Regulation:** Upon completion of a study of acid-base regulation, the student should be able to correctly answer questions concerning the following:

A. State normal range for blood pH and extreme ranges for acidosis and alkalosis.
B. List three defense mechanisms for controlling body fluid pH.
C. List and discuss acid-base buffers within body fluids.
 1. Define buffer.
 2. Using the Henderson-Hasselbach equation, demonstrate the dynamics of the carbon dioxide-bicarbonate ion buffer system.
 3. List other chemical buffers within the body fluids and relate their buffering power compared to the carbon-dioxide-bicarbonate ion buffer system.
D. Describe how the respiratory system regulates pH.
 1. Discuss effects of hydrogen ion concentration on alveolar ventilation and visa versa.
 2. Relate the buffering power of the respiratory system to that of chemical buffers of the body fluids.
E. Describe how the kidneys regulate pH.
 1. Describe tubular secretion of hydrogen ions.
*F. Define and list causes of: respiratory acidosis, respiratory alkalosis, metabolic acidosis, and metabolic alkalosis.

*will not be covered in class
SPECIFIC OBJECTIVES FOR THE LABORATORY PORTION OF THE COURSE

I. Renal Regulation of Osmolarity of Body Fluids Experiment Lab: The student will correctly complete a class experiment demonstrating how the kidneys regulate osmolarity of body fluids and complete a laboratory report describing the experiment and answering questions.

II. Internal Anatomy of the Cat: Upon completion of a dissection of the internal anatomy of the cat, the student should be able to correctly identify the following structures during a laboratory practical exam.

Chapter 3: Body Cavities and Mesenteries
- thoracic cavity
- abdominopelvic cavity
- parietal pleura
- visceral pleura
- rt. & lf. pleural cavities
- mediastinum
- mediastinal septum
- pulmonary ligaments
- parietal pericardium
- visceral pericardium (epicardium)
- pericardial cavity
- diaphragm
- central tendon of diaphragm
- parietal peritoneum
- visceral peritoneum
- peritoneal cavity
- falciform ligament
- round ligament
- greater omentum

- subparts of the above

Chapter 4: Digestive System
- salivary glands
- parotid gland
- parotid duct (Stensen’s)
- submandibular (submaxillary)
- submandibular duct (Wharton’s)
- sublingual gland
- lips
- vestibule
- labial frenulum
- oral cavity
- teeth
- incisors
- canine
- premolars
- molars
- lingual frenulum
- papillae
- hard palate
- soft palate
- pharynx
- nasopharynx
- oropharynx
- laryngopharynx
- internal nares
- eustachian (auditory) tube openings
fauces
palatine tonsils
epiglottis
glottis
esophagus
-cardiac sphincter
stomach
-greater curvature
-lesser curvature
-cardiac region
-fundus
-body
-pyloric region
-pyloric sphincter
small intestine
-duodenum
-jejunum
-ileum
-ileocecal valve
large intestine
-cecum
-ascending colon
-transverse colon
-descending colon

liver
-left medial lobe
-left lateral lobe
-quadrant lobe
-right medial lobe
-right lateral lobe
-caudate lobe
gall bladder
hepatic ducts
cystic duct
-common bile duct
pancreas
-head
-tail
-pancreatic duct
ampulla of Vater
spleen

Chapter 5: Respiratory system
tracea
lungs
- primary (main stem) bronchi
- secondary (lobar) bronchi
- tertiary (segmental) bronchi
-hilus
-root
-mediastinal surface
-apical surface
-diaphragmatic (basilar) surface
-costal surface
-anterior (upper) lobe
-median (middle) lobe
-posterior (lower) lobe

Chapter 6: "Urogenital System"
kidneys
internal & external inguinal ring
adrenal gland
ductus deferens (vas deferens)
hilus of kidney
prostate gland
ureter
bulbourethral gland
<table>
<thead>
<tr>
<th>Urinary Bladder</th>
<th>Epididymus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethra</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Penis</td>
<td>Mesovarium</td>
</tr>
<tr>
<td>Scrotum</td>
<td>Ovarian ligament</td>
</tr>
<tr>
<td>Testes</td>
<td>Graffian follicles</td>
</tr>
<tr>
<td>Spermatic Cord</td>
<td>Corpus luteum</td>
</tr>
<tr>
<td>Inguinal Canal</td>
<td>Fallopian tube</td>
</tr>
<tr>
<td>Mesosalpinx</td>
<td>Abdominal ostium (infundibulum)</td>
</tr>
<tr>
<td>Uterine Horns</td>
<td>Fimbriae</td>
</tr>
<tr>
<td>Body of Uterus</td>
<td>Cervix</td>
</tr>
<tr>
<td>Vagina</td>
<td>Urethral orifice</td>
</tr>
<tr>
<td>Mesometrium</td>
<td>Labia majora</td>
</tr>
<tr>
<td>Broad Ligament</td>
<td>Clitoris</td>
</tr>
<tr>
<td>Round Ligament</td>
<td>Epididymis (head, body, & tail)</td>
</tr>
<tr>
<td>Gubernaculum</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 7: Endocrine System

<table>
<thead>
<tr>
<th>Pituitary</th>
<th>Adrenal glands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid Gland</td>
<td>Pancreas</td>
</tr>
<tr>
<td>Parathyroid Glands</td>
<td>Ovaries</td>
</tr>
<tr>
<td>Thymus Gland</td>
<td>Testes</td>
</tr>
</tbody>
</table>

Chapter 8 "The Circulatory System"

<table>
<thead>
<tr>
<th>Pulmonary Artery</th>
<th>Left & right subclavian artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary Veins</td>
<td>Left & right common carotid artery</td>
</tr>
<tr>
<td>Precava (Superior Vena Cava)</td>
<td>Internal & external carotid artery</td>
</tr>
<tr>
<td>Internal & External Jugular Veins</td>
<td>Internal mammary artery</td>
</tr>
<tr>
<td>Intercostal Veins</td>
<td>Vertebral artery</td>
</tr>
<tr>
<td>Internal Mammary Veins</td>
<td>Axillary artery</td>
</tr>
<tr>
<td>Innominate Veins (Brachiocephalic)</td>
<td>Brachial artery</td>
</tr>
<tr>
<td>Subclavian Veins</td>
<td>Intercostal arteries</td>
</tr>
<tr>
<td>Axillary Veins</td>
<td>Celiac artery</td>
</tr>
<tr>
<td>Brachial Vein</td>
<td>Superior mesenteric artery</td>
</tr>
<tr>
<td>Aorta (Ascending, Arch, Thoracic, Abdominal)</td>
<td>Renal arteries</td>
</tr>
<tr>
<td>Innominate Artery (Brachiocephalic)</td>
<td>Spermatic (testicular) artery</td>
</tr>
<tr>
<td>Inferior Mesenteric Artery</td>
<td>Ovarian artery</td>
</tr>
<tr>
<td>Ovarian or Spermatic Vein</td>
<td>Postcava (inferior vena cava)</td>
</tr>
<tr>
<td>External Iliac Artery</td>
<td>Hepatic vein</td>
</tr>
<tr>
<td>Popliteal Artery</td>
<td>Femoral artery</td>
</tr>
<tr>
<td>Azygos Vein</td>
<td>Femoral vein</td>
</tr>
<tr>
<td>Hepatic Artery</td>
<td>Superior mesenteric vein</td>
</tr>
<tr>
<td>Splenic Artery</td>
<td>Inferior mesenteric vein</td>
</tr>
<tr>
<td>Gastric Artery</td>
<td>Gastroepiploic vein</td>
</tr>
<tr>
<td></td>
<td>Hepatic portal vein</td>
</tr>
</tbody>
</table>
Chapter 9 "Nervous System"

meninges
-dura mater
-arachnoid mater
-pia mater
cerebrum
gyrus
sulcus
fissure
corpus callosum
lateral ventricle
cerebellum
pons
medulla
spinal cord
facial nerve
cervical plexus
brachial plexus
phrenic nerve
vagus nerve
lumbosacral plexus
femoral nerve
sciatic nerve
sympathetic ganglia (trunk)

III. Anatomy of the Heart Lab: Upon completion of a dissection of a heart, the student should be able to complete a lab practical exam.

A. Complete a dissection of a heart and be able to identify the following heart structures on a lab practical exam.

parietal pericardium
visceral pericardium
pericardial space
epicardium
myocardium
endocardium
right and left atria
right and left ventricles
tricuspid valve
papillary muscles
bicuspis valve
pulmonary valve
aortic valve
interventricular septum
superior and inferior vena cava
aorta
pulmonary artery
pulmonary veins
coronary arteries
chordae tendenae

IV. Cardiovascular Physiology Lab:
Upon completion of a lab exercise, the student should be able to complete a lab report concerning the following:

A. Record an electrocardiogram, and from the tracing, be able to:
 1. identify p, qrs, t-waves, and s-t segment
 2. determine the p-r interval
 3. determine the heart rate
B. Record the pulse wave and on it identify the dicrotic notch.
C. Listen to heart sounds, identifying S1 and S2 and the valves making the sound.
D. Obtain a blood pressure
V. **Hematology Lab:** Upon completion of a laboratory study of blood, the student should be able to correctly answer questions concerning the following and have completed the following:

A. The student is to complete the following complete blood count (CBC) tests:
 - wbc count
 - hemoglobin determination
 - differential wbc count
 - hematocrit
 - rbc count

B. The student is to determine blood glucose concentration, sedimentation rate, blood type (ABO and Rh), and calculate estimation of blood volume, total O₂ carrying capacity, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin content (MCHC).

C. The student should be able to interpret results, define hematology terms given in this lab, and describe the basic methods used for analysis.

VI. **Anatomy of the Kidney Lab:**

A. Upon completion of a dissection of a kidney, the student should be able to correctly identify the following:

 - renal capsule
 - cortex
 - renal artery
 - pyramid
 - renal vein
 - papillae
 - ureter
 - pelvis
 - hilus
 - calyx

B. Perform a routine urine analysis composed of a basic physical, chemical, and microscopic exam.

VII. **Respiratory Physiology Lab:** Upon completion of gathering data from respiratory physiology experimentation, the student should be able to correctly complete a lab report containing the following:

A. Data from the following pulmonary function tests using a spirometer:
 - tidal volume
 - daily pulmonary ventilation
 - expiratory reserve volume
 - maximal breathing capacity
 - inspiratory reserve volume
 - forced expiratory volume (l sec.)
 - vital capacity
 - minute respiratory volume

B. Data from exercises demonstrating neural and humoral control of pulmonary ventilation.

C. Upon completion of the exercise, the student will also correctly answer examination questions concerning the following:
 1. Definitions of lung volumes and capacities.
 2. Neural and humoral control of respiration.
 3. Definitions of respiratory terms listed in the laboratory exercise.
COURSE OUTLINE: BIO 212 - HUMAN ANATOMY & PHYSIOLOGY II

I. Endocrinology

A. Hormonal action and control
B. Hormones, function, control, structures, and disorders of endocrine glands
 1. Adenohypophysis
 2. Neurohypophysis
 3. Thyroid
 4. Parathyroid
 5. Adrenal cortex
 6. Adrenal medulla
 7. Testes
 8. Ovaries
 9. Pancreas

II. Reproductive system

A. Male reproductive system
B. Female reproductive system
C. Female reproductive cycle
D. Fertilization and development

III. Cardiology

A. General path of circulation
B. Anatomy of the heart
C. Path of blood flow through the heart
D. Electrophysiology
E. Pumping action and cardiac cycle
F. Control of cardiac output

IV. Circulation

A. Major systemic arteries
B. Major systemic veins
C. Physiology of circulation
 1. Physics of blood flow
 2. Blood pressure

V. Hematology

A. General functions and characteristics of blood
B. Formed elements
 1. Erythrocytes
 a. characteristics; Lab values
 b. hemoglobin
 c. formation of
d. iron metabolism
e. destruction of

2. Leukocytes
 a. characteristics; Lab values
 b. role in immunity and inflammation

3. Platelets
C. Plasma
D. Hemostasis
E. Immunity

VI. Respiratory system

 A. Functions and overview
 B. Anatomy of the airway
 C. Pulmonary ventilation
 D. Gas exchange
 E. Gas transport

VII. Digestive system

 A. Purpose and overview
 B. Chemical hydrolysis of food
 C. Anatomy of the G-I tract and accessory structures
 D. Biliary system
 E. G-I motility
 F. Secretion and absorption

VIII. Excretory system

 A. Functions and overview
 B. Chemicals excreted
 C. Macro and microscopic anatomy of the kidneys
 D. Urinary tract
 E. Urine formation
 F. Renal regulation of fluid and electrolytes

IX. Acid-Base Balance

 A. pH and normal ranges
 B. Regulatory mechanisms
 1. Acid-base buffers
 2. CO₂ - bicarbonate ion ratio
 3. Respiratory regulation
 4. Renal regulation
 C. Metabolic and respiratory acidosis/alkalosis
TENTATIVE ACADEMIC SCHEDULE
Spring Semester, 2007

Lecture: Tuesday and Thursday, 12:30 - 1:55, room 202

Jan. 23: Endocrine system
Jan. 25: Endocrine system (con’t)
Jan. 30: Endocrine system (con’t)
Feb. 1: Endocrine system (con’t)
Feb. 6: Endocrine system (con’t)
Feb. 8: Endocrine system (con’t)
Feb. 13: Male Reproductive system
Feb. 15: Female Reproductive system
Feb. 20: Female Reproductive system (con’t)
Feb. 22: Heart
Feb. 27: Exam #1
Mar. 1: Heart (con’t)
Mar. 6: Heart (con’t)
Mar. 8: Heart (con’t)
Mar. 13: Heart (con’t)
Mar. 15: Heart (con’t)
Mar. 20: Spring Break: no class
Mar. 22: Spring Break: no class
Mar 27: Circulation
Mar. 29: Blood pressure
April 3: Blood
April 5: Blood (con’t)
April 10: Blood (con’t)
April 12: Exam #2
April 17: Blood and Immunity
April 19: Digestive system ***
April 24: Digestive system (con’t)
April 26: Respiratory system
May 1: Respiratory system (con’t)
May 3: Respiratory system (con’t)
May 8: Respiratory system (con’t)
May 10: Acid/Base balance

*** April 23: Last day to withdraw

TOPIC ORDER AND TEXTBOOK READING

Unit I: *Martini; Endocrinology; chapter 18; Applications Manual, pp. 107-118
Unit II: Martini; Reproductive system; chapter 28 and pp. 1095-1108; Applications Manual, pp. 213-237
Unit III: Martini; Heart, chapter 20; Applications Manual, pp. 134-141
Unit IV: Martini; Anatomy of the Blood Vessel and Circulation Routes; 709-718; Applications Manual, p. 141
Unit V: Martini; Physiology of Circulation; pp. 718-758; Applications Manual, pp. 141-146
Unit VI: Martini; Hematology: chapter 19 and 22; Applications Manual, pp. 120-133, 147-162
Unit VII: Martini; Respiratory system; chapter 23; Applications Manual, pp. 164-175
Unit VIII: Martini; Digestive system; chapter 24; Applications Manual, pp. 176-199
Unit IX: Martini; Excretory system; chapter 26; Applications Manual, pp. 200-208
Unit X: Martini; Acid-Base Balance; pp. 1007-1019; Applications Manual, pp. 208-212

Tentative Academic Schedule - Lab
Spring Semester, 2007
Tuesday or Thursday - 9:00 - 12:00, Rm. 204

<table>
<thead>
<tr>
<th>Tuesday Lab</th>
<th>Thursday Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/23: Endocrinology lecture</td>
<td>1/25: Endocrinology lecture</td>
</tr>
<tr>
<td>1/30: Renal Regulation of Osmolarity</td>
<td>2/1: Renal Regulation of Osmolarity</td>
</tr>
<tr>
<td>2/6: Cat dissection</td>
<td>2/8: Cat dissection</td>
</tr>
<tr>
<td>2/13: Cat dissection</td>
<td>2/15: Cat dissection</td>
</tr>
<tr>
<td>2/20: Cat dissection</td>
<td>2/22: Cat dissection</td>
</tr>
<tr>
<td>2/27: Lab Practical Exam 1 followed by cat diss.</td>
<td>3/1: Lab Practical Exam 1 followed by cat diss.</td>
</tr>
<tr>
<td>3/6: Heart dissection/Cat dissection</td>
<td>3/8: Heart dissection/Cat dissection</td>
</tr>
<tr>
<td>3/13: Cardiovascular physiology</td>
<td>3/15: Cardiovascular physiology</td>
</tr>
<tr>
<td>3/20: Spring Break (no classes, lab is open)</td>
<td>3/22: Spring Break (no classes, lab is open)</td>
</tr>
<tr>
<td>3/27: Lab Practical Exam 2 followed by video</td>
<td>3/29: Lab Practical Exam 2 followed by video</td>
</tr>
<tr>
<td>4/3: Blood analysis</td>
<td>4/5: Blood analysis</td>
</tr>
<tr>
<td>4/10: Blood analysis</td>
<td>4/12: Blood analysis</td>
</tr>
<tr>
<td>4/17: Blood quiz/kidney anatomy/urine analysis</td>
<td>4/19: Blood quiz/kidney anatomy/urine analysis</td>
</tr>
<tr>
<td>4/24: Pulmonary function analysis</td>
<td>4/26: Pulmonary function analysis</td>
</tr>
<tr>
<td>5/1: lab quiz over pulmonary volumes and urine analysis followed by lecture</td>
<td>5/3: lab quiz over pulmonary and urine analysis followed by lecture</td>
</tr>
<tr>
<td>5/8: TBA</td>
<td>5/10: TBA</td>
</tr>
</tbody>
</table>
LAB HOURS - ROOM 204

SPRING SEMESTER - 2007

MONDAY: 8:00AM - 6:30 PM
TUESDAY: 9:00 AM - 9:30 PM
WEDNESDAY: 8:00 AM - 6:30 PM
THURSDAY: 9:00 AM - 9:30 PM
FRIDAY: 9:00 AM - 12:00 PM*

*Friday afternoon by arrangement
(additional times by arrangement)

LAB USAGE

1. All students enrolled in General Biology, Human Biology, Anatomy and Physiology, Microbiology, and Genetics are welcome to use the lab during the lab hours posted above.
2. If you plan on using the lab when another instructor has a class in session, please check with that instructor at the beginning of their class. (refer to the class schedule below)
3. If there is another class in session, please work quietly at the back of the room.
4. Anatomy/Physiology students cannot dissect when General or Human Biology labs meet. Other activities are permitted
5. The lab may be closed during certain times of the semester for testing purposes. These times will be posted on the door, as needed.

ROOM 204 CLASS SCHEDULE

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 12:00</td>
<td>A&P II</td>
<td>9:00 – 12:00</td>
<td>A&P II</td>
<td>9:00 - 12:00</td>
</tr>
<tr>
<td>Kirkpatrick</td>
<td></td>
<td>Kirkpatrick</td>
<td></td>
<td>Dopirak</td>
</tr>
<tr>
<td>1:00 - 4:00</td>
<td>1:00 - 4:00</td>
<td>1:00 - 4:00</td>
<td>Gen. Biology I</td>
<td></td>
</tr>
<tr>
<td>A&P II</td>
<td>A&P II</td>
<td>Kirkpatrick</td>
<td></td>
<td>Samuelson</td>
</tr>
<tr>
<td>Kirkpatrick</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00-8:00</td>
<td></td>
<td></td>
<td>6:30 - 9:30</td>
<td></td>
</tr>
<tr>
<td>A&P II</td>
<td></td>
<td></td>
<td>Gen Biology I</td>
<td></td>
</tr>
<tr>
<td>Copeland</td>
<td></td>
<td></td>
<td></td>
<td>Samuelson</td>
</tr>
</tbody>
</table>