Office: Room C232, M, T & W 1:00-1:50 p.m. Ph: (860) 215-9464. Email: <u>jrhoades@trcc.commet.edu</u>

Class: M & W 2:00-3:15 p.m., Room D117

(no class on 2/16, Presidents Day or 3/16 & 3/18, Spring Break).

Lab: M & W 3:30-4:45 p.m., Room D117 (no lab on 3/16 & 3/18, Spring Break).

Textbook:

Using the MCS-51 Microcontroller; Han-Way Huang; Oxford University Press, 2000. This includes a CD-ROM from Keil Software, Inc., including the μ Vision software development system and dScope debugger. An updated version is available on-line from XXXXXX.

Other Resources:

It must be emphasized that there is no such thing as a perfect textbook, and for advanced courses even adequate may be a stretch. This course is no exception and may be one of the worst offenders. Please try to show up for classes: You have made a commitment to try to get your money's worth.

As in other courses, outside material has been found or generated to present as part of the course. These have as much weight as the text and should be kept as a supplement to the text and lecture notes. There is a lot of information on the Internet: Search on "MCS-51" or go to a web site for Intel or one of the other companies mentioned in Appendix F of the text. The instruction-set handout was downloaded from Atmel, and is similar to Appendix G but more readable. Intel application note AP-69 "An Introduction to the Intel[®] MCS-51TM Single-Chip Microcomputer Family," thirty pamphlet-size pages, which is quite good as a supplement to the text, was also a download, and other info is available. There is a lot of academic and industrial interest in these processors: many FAQ sites, conference papers and even an on-line textbook. You may find something good to share with the class. Changes in our course assessment procedure may result in an assignment along these lines (TBD).

Lab Materials:

All lab parts will be provided this term. Copies of the Keil 8052 IDE are installed on TBD in Room D117, and will be used to create and debug programs. A memory programmer (usbasp with modified avrdude) is installed on TBD of these PCs and will be used to load programs into the internal memory of the AT89S51 microcontrollers. Some 2732 EPROMs will be programmed TBD. The AT89S51 has electrically-erased serially-programmed flash memory but the 2732 uses an ultraviolet memory eraser.

Two sets of extra-large breadboards and processors will be available for each lab group, since most experiments build on earlier ones with similar hardware, but the external memory lab pursues side issues with a different hardware configuration.

Occasionally software modifications will require use of a student USB drive to transport files to the memory programmer. Please be sure these are malware-free. Lab experiments will generally have a hardware part and a software part, with analysis emphasized rather than code writing.

Why are we looking at a microcontroller?

We have been using this text since 2001. As implied in the new course title, the microprocessor category has split into the far more visible computer chips (PCs: 8086, 80286, 80386, 80486, assorted "Pentia"; Macs: Various Motorola 6800-family descendants) and the embedded processors found in toys, cars, appliances, etc. Some of these are similar to the computer chips (80186 and embedded versions of the '386, etc.) but others are more specialized for control. Like the 8086 family (iAPX86), the MCS-51 family has added on more capabilities and has been built in low-power and ultrafast versions but is still upwardly compatible with the original 8051. The programmable logic controllers (PLCs) used in Robotic Control Systems Lab uses a variant. The Arduino boards based on this family have become very popular. Besides the MCS-51 family, there are competitors such as the Motorola MC68HC11 and various PIC models from Microchip. Some recently-developed microcontrollers are tremendously powerful but have "too many options" and are usually programmed in the C language.

An introduction to microprocessors should involve a unit that is both useful and comprehensible, and is lab-friendly. The 8086 was both too complex and too far from the present family members for the lecture, and using the 80C85 for lab was a problem with suppliers. There wasn't a "real assembler" available for the 8085, making software development tedious, although the DOS DEBUG utility was available for simulating an 8086. This textbook came with "free" software development tools and an integrated debugger (limited "evaluation" versions) that everyone would have access to for homework, etc. The 8-bit 8751H operating at one of the standard clock rates (7.3728 MHz) was originally chosen as being hands-onfriendly, and the AT89S51 update from ATMEL is mostly compatible and uses serially-programmed flash memory. The basic instruction-cycle rate (614.4 kHz) is 1/12 of the clock rate and the highest breadboard frequency is ALE ("address latch enable") at twice that frequency, or 1.2288 MHz, which presents no breadboarding problems. Using this for the internal timers works nicely for generating delays in multiples of 5 ms. This clock frequency is below the rating of 12 MHz, but is used in industry for generating the standard baud rates for data communications (2400 bits/sec, etc.).

What are we covering in the text?

Naturally, we can get more of a handle on 8051 functions than on some of the features added in the 8052 and later versions, but we will try to keep things fairly general. We will follow chapter order in class, although in lab we need to get a working knowledge of ports and timers very early.

Chapter	Торіс	Coverage	Comments
1	Introduction	All sections	See also Intel info. Test 1.
2	Assembly-language Programming	All sections	Not all subsections: nothing that doesn't work in lab
3	Advanced Assembly Programming	Sections 1-3, 6-8 mostly (topics)	I have some opinions, case studies, etc. Some examples will be replaced Test 2.
4	External Memory	Most sections	Again, I have my opinions We will do a lab on this.
5	Interrupts, etc.	All sections?	Very important for control. Lab, "CEPHAS" game case- study, etc.
6	Parallel I/O Ports	Most sections	Will gloss over 6.9, tough. I have other examples. We will have some experience in lab.
7	Timers and Counters	Sections 1-3 (modes 1 & 2)	Gloss over non-8051 issues. We will be doing a lot of lab work and case studies.
8	A/D Converter	Not much	Some types have built-in A/D. We are doing a lab.
9	Serial I/O	Section 4 & mode 1 mostly	Important. This will be the final lab experiment. Test 3.

Basis of Course Grade

We usually have three weighted tests. A research paper or design project may be assigned. Homework counts also: A few sets may be collected, unannounced, for assessment and each student, at random, will present the solution to a selected problem before the instructor's solution is revealed. Class participation also is a consideration. The TBD portfolio assignment will be a factor.

The lab grade will be based largely on the submitted lab reports (either individual or group reports are acceptable), although attendance, punctuality, teamwork, etc. are also factors here.

Digication and Assessment

All students are required to maintain a learning portfolio in Digication that uses the college template.

Academic Honesty

Students are expected to follow College policy on Academic Honesty regarding assignments. Specifically, be aware of the difference between collaboration and copying and be careful to cite sources when required. This policy also includes expectation of regular class attendance, punctuality, and timeliness in completing assignments.

Expectation of Civility and Safety

College policies for civility and safety are posted around the building. These must be followed in order to maintain a positive learning environment.

College Withdrawal Policy

Students may withdraw, in writing or verbally at the Registrar's Office for any reason until the end of the 10th week of classes. From the 11th week through the end of the 13th week, a student may withdraw with the instructor's written approval.

Disabilities Statement

If you are a student with a disability and believe you will need accommodations for this class, it is your responsibility to contact Disabilities Counseling Services in Room A119. To avoid any delay in the receipt of accommodations, you should contact the counselor as soon as possible. Please note that we cannot provide accommodations based upon disability until we have received an accommodation letter from a Disabilities Counselor.

MyCommnetAlert:

myCommNet Alert is a system that sends text messages and emails to anyone signed up in the event of a campus emergency. Additionally, TRCC sends messages when the college is delayed or closed due to weather. All students are encouraged to sign up for myCommNet Alert. A tutorial is available: http://www.trcc.commnet.edu/div_it/educationaltechnology/Tutorials/myCommNetAlert/MIR3.html

TRCC Email:

If the instructor needs to communicate with a student or the entire class, the TRCC Email system will be used exclusively (Individuals may also be telephoned if circumstances warrant). It is vital that the student check their TRCC Email account often (or keep it forwarded to a *valid active* personal account) and keep other contact info current. See the TRCC website for details.

Course Outcomes

ABET Outcome Requirements- Associate Degree Programs - 2013/2014

- a. an ability to apply the knowledge, techniques, skills, and modern tools of the discipline to narrowly defined engineering technology activities;
- b. an ability to apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require limited application of principles but extensive practical knowledge;
- c. an ability to conduct standard tests and measurements, and to conduct, analyze, and interpret experiments;
- d. an ability to function effectively as a member of a technical team;
- e. an ability to identify, analyze, and solve narrowly defined engineering technology problems;
- f. an ability to apply written, oral, and graphical communication in both technical and nontechnical environments; and an ability to identify and use appropriate technical literature;
- g. an understanding of the need for and an ability to engage in self-directed continuing professional development;
- h. an understanding of and a commitment to address professional and ethical responsibilities, including a respect for diversity; and
- i. a commitment to quality, timeliness, and continuous improvement.

TRCC EET Stated Outcomes

- 1. Students will practice the skills needed to work effectively in teams and as an individual.
- 2. Students will demonstrate the ability to use appropriate mathematical and computational skills needed for engineering technology applications.
- 3. Students will combine oral, graphical, and written communication skills to present and exchange information effectively and to direct technical activities.
- 4. Students will know of a professional code of ethics.
- 5. Students will describe concepts relating to quality, timeliness, and continuous improvement.
- 6. Students will describe how the concepts of electric circuits, electrical measurements, digital electronic devices, programmable logic circuits, electromechanical and automated systems, affect the design, maintenance, and operation of electrical systems.
- 7. Students will illustrate an ability to think critically and identify, evaluate and solve complex technical and non-technical problems; demonstrate creativity in designing problem solutions; and conduct and interpret experimental data and outcomes.
- 8. Students will recognize actions and acts of professionalism that allows them to become informed and participating citizens cognizant of ethics, civic duty, and social responsibility.
- 9. Students will recognize the need to be lifelong learners.

K258/9 Course Outcomes

- 1. Mastery of Electrical Technology concepts as defined in the course syllabus
- 2. Knowledge of concepts of the hardware and software of microcontroller-based systems
- 3. Demonstrate an ability to build and test microcontroller-based systems
- 4. Demonstrate an ability to analyze and solve problems relating to microcontroller-based systems
- 5. Demonstrate senior level oral and written communication skills
- 6. Demonstrate an appreciation for lifelong learning
- 7. Demonstrate proper professional and ethical behavior
- 8. Demonstrate a commitment to quality, timeliness and continuous improvement

Week	Date (2015)	Title	
L1	1/26 & 28	Introduction (Walkthrough)	
L2	2/2 & 4	Seven-Segment Display: Hardware	
L3	2/9 & 11	Seven-Segment Display: Test Program	
L4	2/18*	"Oddsum" Program: Hardware Version	
L5	2/23 & 25	"Oddsum" Program: Debugger Version	
L6	3/2 & 4	DMM #1: Single-Range Frequency Counter	
L7	3/9 & 11	DMM #2: Autoranging Frequency Counter	
L8	3/23 & 25	External Memory Interfacing	
L9	3/30 & 4/1	\downarrow	
L10	4/6 & 8	DMM #3: Single-Slope A/D DC Voltmeter	
L11	4/13 & 15	\downarrow	
L12	4/20 & 22	DMM #4: Interrupt-Driven A/D Control	
L13	4/27 & 29	Serial I/O Part I	
L14	5/4 & 6	Serial I/O Part II	
L15	5/11, 13, 18	Makeup/Catch-up	

Office: Room C232 (office hours M, T & W 1:00-1:50).

- Note: Lab meets in Room D117, M & W 3:30-4:45 p.m. Exact meeting times and topics are TBD, following the lecture sessions. No class 2/16/15, 3/16/15, 3/18/15. Optional makeup day: 5/20/15.
 - * Earlier than normal, flexible scheduling. The hardware is the same as in the previous labs, new software.