THREE RIVERS COMMUNITY COLLEGE COURSE OUTLINE - Fall 2017

CRN 30205 M/W 3:15-4:55p Rm E225

Instructor: Robert Lantz (RLANTZ@TRCC.COMMNET.EDU)

Course Number/Title: MEC K272 Fluid Mechanics/Thermodynamics	
Lecture 4 hrs Laboratory 0 hrs Credit 4 hrs Contact 4 hrs	3
Course Description: To investigate the behavior of fluids/matter fluid mechanics and thermodynamics point of view.	from a
Method/Grading: The Course Grade will include Lecture Attendance, Submitted Homework, (3) In-Class Tests & In-Class Participation. will be Open Book/Notes and will cover the entire Class Period. Digication Requirement: All students are required to maintain an object of the college template.	
Text: Applied Fluid Mechanics, Mott; Introduction to Engineering Thermodynamics, Sonntag, & Handouts. TI-89 Calculator is Recommend	
Prerequisites: PHY K115 Co-Requisites:	
COURSE TOPICS/CONTENT	
	HOURS
A. FLUID PROPERTIES Pressure head, buoyancy, flow velocity	10
B. CONSERVATION OF ENERGY Bernoulli's equation, venturi, orifice, flow devices, Friction energy loss.	10
C. CONTINUITY EQUATION Conservation of mass, velocity relationships	10
D. PIPE FLOW Viscosity, Reynold's number, flow losses, branch pipes	10
E. ENERGY EQUATION OF GASES Constant pressure, volume, temperature, adiabatic processes	9
F. BASIC ENGINE CYCLES Compressed air, internal combustion cycle, gas turbine, steam processes, Carnot cycle.	n 11
TOTAL HOURS	60
Date: August 26, 2017	
Prepared By: Robert Lantz	
Program Coordinator: Mike Gentry	

Department Chairperson: Mike Gentry

Continuation Sheet No 2 of 2

Course Number/Title: MEC K272 Fluid Mechanics/Thermodynamics

Objective:

The Objective of this Course is to Understand and Predict how Matter will Respond when Acted upon by the following Natural Laws:

- 1) Law of Gravity
- 2) Force-Mass-Acceleration Law
- 3) Conservation of Energy Law
- 4) Conservation of Mass Law
- 5) Law of Kinetic Energy
- 6) Law of Potential Energy
- 7) Law of Internal Energy
- 8) Law of Flow Energy
- 9) Law of Work
- 10) Law of Power
- 11) Law of Friction Loss
- 12) Law of Heat
- 13) Law of Gravity
- 14) Gas Laws

Measurable Outcomes:

Upon Completion of this Course the Student will:

- Be able to determine pressures, forces, velocities and Buoyancy of static fluids
- Be able to apply continuity and energy equations to a variety of flow situations
- 3. Be able to determine pipe head loss due to friction flow problems
- 4. Be able to analyze engine cycles that involve constant pressure, temperature, volume or entropy. Also to understand the perfect gas laws.