38. The height of the center of gravity at stable equilibrium is
\[d = \frac{0.500 \text{ m}}{2} = 0.250 \text{ m}. \]
The minimum height of the center of gravity at unstable equilibrium is half the diagonal distance
\[d' = \sqrt{\frac{0.500 \text{ m}}{2}} = 0.3536 \text{ m}. \]
So the minimum distance that CG has to be raised is \(0.3536 \text{ m} - 0.250 \text{ m} = 0.1036 \text{ m}. \)
Therefore the work done against gravity is \(W = (10.0 \text{ kg})(9.80 \text{ m/s}^2)(0.1036 \text{ m}) = 10.2 \text{ J}. \)

39. When it is about to tip over the left support, the force on the right support is zero.
Choose the left support as the axis of rotation.
Using \(\Sigma \tau = 0, \) \((70 \text{ kg})(9.80 \text{ m/s}^2)(1.5 \text{ m}) - (15 \text{ kg})(9.80 \text{ m/s}^2)(2.75 \text{ m}) + T_1(5.5 \text{ m}) = 0, \)
so \(T_1 = \frac{2.6 \times 10^4 \text{ N}}{5.5 \text{ m}} = 0.473 \text{ N}. \)
\(\Sigma F_y = 0, \quad \Rightarrow \quad T_1 - T_2 = (70 \text{ kg} + 15 \text{ kg})(9.80 \text{ m/s}^2), \)
so \(T_2 = 833 \text{ N} - 261 \text{ N} = 5.7 \times 10^2 \text{ N}. \)
\(T_2 \) can also be found by choosing the right end as the axis.

40. Choose the left end as the axis. \(\Sigma \tau = 0, \)
\[T_1(0) - (70 \text{ kg})(9.80 \text{ m/s}^2)(1.5 \text{ m}) - (15 \text{ kg})(9.80 \text{ m/s}^2)(2.75 \text{ m}) + T_1(5.5 \text{ m}) = 0, \]
so \(T_1 = \frac{2.6 \times 10^4 \text{ N}}{5.5 \text{ m}} = 0.473 \text{ N}. \)
\(\Sigma F_y = 0, \quad \Rightarrow \quad T_1 - T_2 = (70 \text{ kg} + 15 \text{ kg})(9.80 \text{ m/s}^2), \)
so \(T_2 = 833 \text{ N} - 261 \text{ N} = 5.7 \times 10^2 \text{ N}. \)
\(T_2 \) can also be found by choosing the right end as the axis.

41. (a) \(\tan \theta \) should be equal to \(f_i/N. \)
Assume the distance from the center of gravity (CG) to the point where the wheel touches the ground is \(d. \) Choose CG as the axis. \(\Sigma \tau = 0, \)
f \(f_i d \cos \theta - Nd \sin \theta = 0, \quad \Rightarrow \quad f_i d \cos \theta = Nd \sin \theta, \) or \(f_i = f_i \sin \theta = \tan \theta = \frac{\mu g r}{\mu_g}. \)
(b) \(f_i = \mu_g N = N \tan \theta, \quad \Rightarrow \quad \mu_g = \tan \theta = \tan 11^\circ = 0.19. \)
(c) \(\Sigma F_y = N - mg = 0, \quad \Rightarrow \quad N = mg. \)
f \(f_i = \mu_g mg = F_i = \frac{mv^2}{r}, \quad \Rightarrow \quad v = \sqrt{\mu_g g r} = \sqrt{0.19(9.80 \text{ m/s}^2)(6.5 \text{ m})} = 3.5 \text{ m/s}. \)

42. (d).